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The  transparency,  reflectivity  and  color  for  electro-
chromic  (EC)  materials  can  be  changed  reversibly  under  low
bias[1].  EC  materials  find  wide  application  in  many  fields  like
microelectronics,  energy-saving  buildings,  automobiles,  na-
tional defense and aerospace industry[2]. Compared with inor-
ganic EC materials,  organic EC materials have advantages like
easy  modification  of  molecular  structures,  rich  color  changes
and fast-switching speed[3].

Metal-organic  frameworks (MOFs)  are one type of  organ-
ic EC materials[4]. Dinca et al. introduced the redox-active naph-
thalene diimide (NID) moiety into MOF-74 to achieve high EC
performance[5].  However,  the  coordination  bonds  of  MOFs
are  unstable  to  some  electrolytes,  thus  limiting  the  applica-
tion  of  MOF-based  EC  materials.  Covalent  organic  frame-
works  (COFs)  are  analogues  of  MOFs.  The  building  units  are
connected via covalent  bonds[6].  COFs  based  on  Schiff-base
type  linkages  are  highly  stable  in  aqueous  and  most  organic
electrolytes[7].  COFs  show  many  advantages  for  EC  applica-
tion.  The  skeletons  and  pore  structures  of  COFs  can  be  fa-
cilely  adjusted[8].  The  pores  of  COFs  are  permanent  and  con-
tinuous.  Electrolyte  ions  can easily  pass  through the pores  to
realize  fast  switching  and  high  cycle  stability[9].  The  strong
π–π  interaction  and  periodic  columnar  array  structures  in  2D
COFs facilitate charge transport[10]. The optoelectronic proper-
ties of COFs can be facilely modulated by using different func-
tional  groups  or  side  chains[6].  Thus,  COFs  are  a  good  plat-
form for developing high-performance EC materials.

Schiff-base condensation reactions provide stable aromat-
ic imine bonds and highly conjugated systems for COFs[7]. Un-
der  the  solvothermal  reaction  conditions,  the  imine  ex-
change process can last for a long time and finally produce a
thin  crystalline  COF  film  on  the  substrate[11].  In  2019,  Hao
et  al.  first  reported  a  COFTAPA-TTDA with  near-infrared  (NIR)  EC
property[12].  Tris(4-aminophenyl)amine  (TAPA)  and  thieno
[3,2-b]thiophene-2,5-dicarbaldehyde  (TTDA)  were  chosen  as
building  units  (Fig.  1(a)).  These  building  units  render  COFs
rich  color  and  high  stability[13].  The  color  of  COFTAPA-TTDA can
be reversibly changed from red to brown by changing poten-
tial  between  0  and  1.4  V  (Fig.  1(b)).  The  NIR  absorption  at
1300  nm  can  be  attributed  to  the  intervalence  charge  trans-
fer  (IVCT)  between  triphenylamine  cation  radicals.  Though
COFTAPA-TTDA only  exhibits  moderate  coloration efficiency and

switching  speed  (Table  1),  it  proves  the  feasibility  of  COF-
based  EC  materials.  Xiong et  al.  reported  a  new  EC  material
COFTAPA-TFPA with  reversible  color  change  from  yellow  to
brown[14].  COFTAPA-TFPA can be viewed as a  2D triphenylamine
network  with  the  C=N  bond  linkage.  The  adhesion  of
COFTAPA-TFPA to  substrate  was  improved  by  using  an  amine-
functionalized  ITO  glass  (Fig.  1(c)).  The  EC  behavior  is  attrib-
uted  to  the  reversible  redox  reaction  of  nitrogen  in  triphen-
ylamine unit and C=N bond (Fig. 2(a)).

The  EC  performance  of  COFs  can  be  further  adjusted  by
introducing  electron-donating  (D)  and  electron-accepting
(A)  units.  Yu et  al.  used  a  N,N,N',N'-tetra(p-aminophenyl)-p-
phenylenediamine  (TPBD)  unit  (D)  and  a  2,1,3-benzothi-
adiazole-4,7-dicarboxaldehyde  (BTDD)  unit  (A)  to  construct
D–A type material COFTPBD-BTDD (Fig. 2(b))[15]. Differing from pre-
vious  materials,  COFTPBD-BTDD shows  two  absorption  bands  in
the  visible  region.  Under  bias,  cationic  radicals  and  dications
form,  leading  to  dramatic  color  change  (Fig.  3(a)).  The  excel-
lent  EC  performance  of  COFTPBD-BTDD is  due  to  the  large  pore
volume  which  facilitates  the  ion  diffusion,  and  the  reduced
bandgap  results  from  the  D–A  structure  (Table  1).  Efficient,
fast-switching and stable EC COFs can also be realized by intro-
ducing  D/A  units  into  one  building  unit.  Bessinger et  al.  de-
signed  a  D–A–D  building  unit  with  a  central  thienoisoindigo
A moiety and two thienothiophene (or naphthalene) D moiet-
ies[9].  The  resulted COFPy-ttTII shows strong light  absorption in
the  visible  and  NIR  regions  and  very  fast  switching.  COFPy-ttTII

shows short  coloration/bleaching times  of  0.38  s/0.2  s,  which
outperforms  previous  COFs  by  at  least  an  order  of  mag-
nitude (Table 1).

Further, the EC performance of COFs can be improved by
designing  novel  skeletons,  post-modification  and  developing
COF-based  hybrid  materials.  By  using  N,N,N’,N’-tetrakis(4-
aminophenyl)-1,4-benzenediamine (TPDA) and terephthalalde-
hyde  (PDA)  units,  Hao et  al.  developed  a  highly  crystalline
three-state NIR EC material COFTPDA-PDA (Figs. 3(b) and 3(c))[16].
The  three-state  mix-valence  derives  from  the  adjacent  tri-
arylamine  redox  moieties.  It  causes  a  strong  electronic  coup-
ling and improves the EC performance in the NIR region. Ow-
ing  to  the  porous  structure  and  IVCT  interaction  in  the  mix-
valence  system,  dramatic  absorption  change  and  fast-switch-
ing (subsecond response) were realized (Table 1). Loading func-
tionalized  graphene  oxide  (FGO)  and  carbon  nanotubes  to
COFs can reduce the impedance and further improve EC per-
formance[17, 18]. A FGO-COF developed by Lv et al. showed ex-
cellent cycle stability[17].  After 1800 cycles,  the contrast reten-

  
Correspondence to: S X Xiong, xiongsx@xust.edu.cn; L M Ding,

ding@nanoctr.cn
Received 17 JUNE 2022.

©2022 Chinese Institute of Electronics

RESEARCH HIGHLIGHTS

Journal of Semiconductors
(2022) 43, 090202

doi: 10.1088/1674-4926/43/9/090202

 

 
 

https://doi.org/10.1088/1674-4926/43/9/090202
mailto:xiongsx@xust.edu.cn
mailto:ding@nanoctr.cn


tion even reached 109.1%.
In  short,  COF-based  EC  materials  can  be  synthesized  by

combining  various  redox  units.  The  uniform  porous  struc-
tures  guarantee  fast  ion  diffusion,  and  the  strong  π–π  stack-
ing  in  COFs  allows  efficient  charge  transport.  They  present
higher  stability  than  conducting  polymers,  and  they  show
fast  switching.  Large-area  and  cheap  COF-based  EC  devices
are expected.
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Fig.  1.  (Color  online)  (a)  Chemical  structures for  TAPA,  TTDA,  and COFTAPA-TTDA.  (b)  Schematic  for  the electrochromic phenomenon of  oriented
COFTAPA-TTDA thin film. Reprinted with permission[12], Copyright 2019, American Chemical Society. (c) The preparation of COFTAPA-TFPA nanofibers.
Reprinted with permission[14], Copyright 2020, Elsevier.
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Fig. 2. (Color online) (a) Schematic for the redox process of COFTAPA-TFPA nanofibers. Reprinted with permission[14], Copyright 2020, Elsevier. (b) Syn-
thetic route for COFTPBD-BTDD. Reprinted with permission[15], Copyright 2020, Springer Nature.

 

Fig. 3. (Color online) (a) Color switching of COFTPBD-BTDD device. Reprinted with permission[15], Copyright 2020, Springer Nature. (b) Chemical struc-
tures for TPDA, PDA, and COFTPDA-PDA. (c) The three-state electrochromic behavior of COFTPDA-PDA thin film. Reprinted with permission[16], Copy-
right 2021, Wiley.
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Table 1.   Electrochromic properties of COF-based EC materials.

EC material λmax (nm) tc/tb (s) Coloration efficiency (cm2/C) ∆T (%) Ref.
COFTAPA-TTDA 610

1300
17.5/10.5
18/13

102
152

21
41

[12]

COFTAPA-TFPA 530 4.5/4.9 115 30 [14]
COFTPBD-BTDD 574

730
1.8/7.2
2.6/3.5

284
246

33
12

[15]

COFPy-ttTII 550
660
880

0.38/0.2
0.29/0.14
–

318
620
858

–
–
–

[9]

COFTPDA-PDA 1050
740

1.3/0.7
3.4/1.8

320
227

52
57

[16]
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